direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C22⋊C4×C2×C14, C24⋊5C28, C25.3C14, (C23×C4)⋊4C14, (C23×C14)⋊6C4, (C23×C28)⋊5C2, C23⋊6(C2×C28), (C2×C28)⋊13C23, (C24×C14).2C2, C2.1(C23×C28), C23.58(C7×D4), C24.31(C2×C14), C14.53(C23×C4), C22⋊2(C22×C28), C22.57(D4×C14), (C2×C14).332C24, (C22×C28)⋊57C22, C14.177(C22×D4), (C22×C14).219D4, C22.5(C23×C14), C23.65(C22×C14), (C23×C14).88C22, (C22×C14).251C23, C2.1(D4×C2×C14), (C2×C14)⋊8(C22×C4), (C2×C4)⋊3(C22×C14), (C22×C14)⋊16(C2×C4), (C22×C4)⋊15(C2×C14), (C2×C14).679(C2×D4), SmallGroup(448,1295)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C14 — C2×C28 — C7×C22⋊C4 — C14×C22⋊C4 — C22⋊C4×C2×C14 |
Subgroups: 1010 in 674 conjugacy classes, 338 normal (12 characteristic)
C1, C2, C2 [×14], C2 [×8], C4 [×8], C22, C22 [×42], C22 [×56], C7, C2×C4 [×8], C2×C4 [×24], C23 [×43], C23 [×56], C14, C14 [×14], C14 [×8], C22⋊C4 [×16], C22×C4 [×12], C22×C4 [×8], C24, C24 [×14], C24 [×8], C28 [×8], C2×C14, C2×C14 [×42], C2×C14 [×56], C2×C22⋊C4 [×12], C23×C4 [×2], C25, C2×C28 [×8], C2×C28 [×24], C22×C14 [×43], C22×C14 [×56], C22×C22⋊C4, C7×C22⋊C4 [×16], C22×C28 [×12], C22×C28 [×8], C23×C14, C23×C14 [×14], C23×C14 [×8], C14×C22⋊C4 [×12], C23×C28 [×2], C24×C14, C22⋊C4×C2×C14
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C7, C2×C4 [×28], D4 [×8], C23 [×15], C14 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C24, C28 [×8], C2×C14 [×35], C2×C22⋊C4 [×12], C23×C4, C22×D4 [×2], C2×C28 [×28], C7×D4 [×8], C22×C14 [×15], C22×C22⋊C4, C7×C22⋊C4 [×16], C22×C28 [×14], D4×C14 [×12], C23×C14, C14×C22⋊C4 [×12], C23×C28, D4×C2×C14 [×2], C22⋊C4×C2×C14
Generators and relations
G = < a,b,c,d,e | a2=b14=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >
(1 83)(2 84)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 79)(12 80)(13 81)(14 82)(15 88)(16 89)(17 90)(18 91)(19 92)(20 93)(21 94)(22 95)(23 96)(24 97)(25 98)(26 85)(27 86)(28 87)(29 133)(30 134)(31 135)(32 136)(33 137)(34 138)(35 139)(36 140)(37 127)(38 128)(39 129)(40 130)(41 131)(42 132)(43 149)(44 150)(45 151)(46 152)(47 153)(48 154)(49 141)(50 142)(51 143)(52 144)(53 145)(54 146)(55 147)(56 148)(57 107)(58 108)(59 109)(60 110)(61 111)(62 112)(63 99)(64 100)(65 101)(66 102)(67 103)(68 104)(69 105)(70 106)(113 162)(114 163)(115 164)(116 165)(117 166)(118 167)(119 168)(120 155)(121 156)(122 157)(123 158)(124 159)(125 160)(126 161)(169 186)(170 187)(171 188)(172 189)(173 190)(174 191)(175 192)(176 193)(177 194)(178 195)(179 196)(180 183)(181 184)(182 185)(197 222)(198 223)(199 224)(200 211)(201 212)(202 213)(203 214)(204 215)(205 216)(206 217)(207 218)(208 219)(209 220)(210 221)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 193)(2 194)(3 195)(4 196)(5 183)(6 184)(7 185)(8 186)(9 187)(10 188)(11 189)(12 190)(13 191)(14 192)(15 95)(16 96)(17 97)(18 98)(19 85)(20 86)(21 87)(22 88)(23 89)(24 90)(25 91)(26 92)(27 93)(28 94)(29 125)(30 126)(31 113)(32 114)(33 115)(34 116)(35 117)(36 118)(37 119)(38 120)(39 121)(40 122)(41 123)(42 124)(43 142)(44 143)(45 144)(46 145)(47 146)(48 147)(49 148)(50 149)(51 150)(52 151)(53 152)(54 153)(55 154)(56 141)(57 100)(58 101)(59 102)(60 103)(61 104)(62 105)(63 106)(64 107)(65 108)(66 109)(67 110)(68 111)(69 112)(70 99)(71 178)(72 179)(73 180)(74 181)(75 182)(76 169)(77 170)(78 171)(79 172)(80 173)(81 174)(82 175)(83 176)(84 177)(127 168)(128 155)(129 156)(130 157)(131 158)(132 159)(133 160)(134 161)(135 162)(136 163)(137 164)(138 165)(139 166)(140 167)(197 215)(198 216)(199 217)(200 218)(201 219)(202 220)(203 221)(204 222)(205 223)(206 224)(207 211)(208 212)(209 213)(210 214)
(1 169)(2 170)(3 171)(4 172)(5 173)(6 174)(7 175)(8 176)(9 177)(10 178)(11 179)(12 180)(13 181)(14 182)(15 56)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 167)(30 168)(31 155)(32 156)(33 157)(34 158)(35 159)(36 160)(37 161)(38 162)(39 163)(40 164)(41 165)(42 166)(57 211)(58 212)(59 213)(60 214)(61 215)(62 216)(63 217)(64 218)(65 219)(66 220)(67 221)(68 222)(69 223)(70 224)(71 188)(72 189)(73 190)(74 191)(75 192)(76 193)(77 194)(78 195)(79 196)(80 183)(81 184)(82 185)(83 186)(84 187)(85 145)(86 146)(87 147)(88 148)(89 149)(90 150)(91 151)(92 152)(93 153)(94 154)(95 141)(96 142)(97 143)(98 144)(99 206)(100 207)(101 208)(102 209)(103 210)(104 197)(105 198)(106 199)(107 200)(108 201)(109 202)(110 203)(111 204)(112 205)(113 128)(114 129)(115 130)(116 131)(117 132)(118 133)(119 134)(120 135)(121 136)(122 137)(123 138)(124 139)(125 140)(126 127)
(1 96 159 104)(2 97 160 105)(3 98 161 106)(4 85 162 107)(5 86 163 108)(6 87 164 109)(7 88 165 110)(8 89 166 111)(9 90 167 112)(10 91 168 99)(11 92 155 100)(12 93 156 101)(13 94 157 102)(14 95 158 103)(15 116 60 75)(16 117 61 76)(17 118 62 77)(18 119 63 78)(19 120 64 79)(20 121 65 80)(21 122 66 81)(22 123 67 82)(23 124 68 83)(24 125 69 84)(25 126 70 71)(26 113 57 72)(27 114 58 73)(28 115 59 74)(29 205 177 150)(30 206 178 151)(31 207 179 152)(32 208 180 153)(33 209 181 154)(34 210 182 141)(35 197 169 142)(36 198 170 143)(37 199 171 144)(38 200 172 145)(39 201 173 146)(40 202 174 147)(41 203 175 148)(42 204 176 149)(43 132 215 193)(44 133 216 194)(45 134 217 195)(46 135 218 196)(47 136 219 183)(48 137 220 184)(49 138 221 185)(50 139 222 186)(51 140 223 187)(52 127 224 188)(53 128 211 189)(54 129 212 190)(55 130 213 191)(56 131 214 192)
G:=sub<Sym(224)| (1,83)(2,84)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,97)(25,98)(26,85)(27,86)(28,87)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,149)(44,150)(45,151)(46,152)(47,153)(48,154)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,107)(58,108)(59,109)(60,110)(61,111)(62,112)(63,99)(64,100)(65,101)(66,102)(67,103)(68,104)(69,105)(70,106)(113,162)(114,163)(115,164)(116,165)(117,166)(118,167)(119,168)(120,155)(121,156)(122,157)(123,158)(124,159)(125,160)(126,161)(169,186)(170,187)(171,188)(172,189)(173,190)(174,191)(175,192)(176,193)(177,194)(178,195)(179,196)(180,183)(181,184)(182,185)(197,222)(198,223)(199,224)(200,211)(201,212)(202,213)(203,214)(204,215)(205,216)(206,217)(207,218)(208,219)(209,220)(210,221), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,193)(2,194)(3,195)(4,196)(5,183)(6,184)(7,185)(8,186)(9,187)(10,188)(11,189)(12,190)(13,191)(14,192)(15,95)(16,96)(17,97)(18,98)(19,85)(20,86)(21,87)(22,88)(23,89)(24,90)(25,91)(26,92)(27,93)(28,94)(29,125)(30,126)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,119)(38,120)(39,121)(40,122)(41,123)(42,124)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,148)(50,149)(51,150)(52,151)(53,152)(54,153)(55,154)(56,141)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,99)(71,178)(72,179)(73,180)(74,181)(75,182)(76,169)(77,170)(78,171)(79,172)(80,173)(81,174)(82,175)(83,176)(84,177)(127,168)(128,155)(129,156)(130,157)(131,158)(132,159)(133,160)(134,161)(135,162)(136,163)(137,164)(138,165)(139,166)(140,167)(197,215)(198,216)(199,217)(200,218)(201,219)(202,220)(203,221)(204,222)(205,223)(206,224)(207,211)(208,212)(209,213)(210,214), (1,169)(2,170)(3,171)(4,172)(5,173)(6,174)(7,175)(8,176)(9,177)(10,178)(11,179)(12,180)(13,181)(14,182)(15,56)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,167)(30,168)(31,155)(32,156)(33,157)(34,158)(35,159)(36,160)(37,161)(38,162)(39,163)(40,164)(41,165)(42,166)(57,211)(58,212)(59,213)(60,214)(61,215)(62,216)(63,217)(64,218)(65,219)(66,220)(67,221)(68,222)(69,223)(70,224)(71,188)(72,189)(73,190)(74,191)(75,192)(76,193)(77,194)(78,195)(79,196)(80,183)(81,184)(82,185)(83,186)(84,187)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)(91,151)(92,152)(93,153)(94,154)(95,141)(96,142)(97,143)(98,144)(99,206)(100,207)(101,208)(102,209)(103,210)(104,197)(105,198)(106,199)(107,200)(108,201)(109,202)(110,203)(111,204)(112,205)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135)(121,136)(122,137)(123,138)(124,139)(125,140)(126,127), (1,96,159,104)(2,97,160,105)(3,98,161,106)(4,85,162,107)(5,86,163,108)(6,87,164,109)(7,88,165,110)(8,89,166,111)(9,90,167,112)(10,91,168,99)(11,92,155,100)(12,93,156,101)(13,94,157,102)(14,95,158,103)(15,116,60,75)(16,117,61,76)(17,118,62,77)(18,119,63,78)(19,120,64,79)(20,121,65,80)(21,122,66,81)(22,123,67,82)(23,124,68,83)(24,125,69,84)(25,126,70,71)(26,113,57,72)(27,114,58,73)(28,115,59,74)(29,205,177,150)(30,206,178,151)(31,207,179,152)(32,208,180,153)(33,209,181,154)(34,210,182,141)(35,197,169,142)(36,198,170,143)(37,199,171,144)(38,200,172,145)(39,201,173,146)(40,202,174,147)(41,203,175,148)(42,204,176,149)(43,132,215,193)(44,133,216,194)(45,134,217,195)(46,135,218,196)(47,136,219,183)(48,137,220,184)(49,138,221,185)(50,139,222,186)(51,140,223,187)(52,127,224,188)(53,128,211,189)(54,129,212,190)(55,130,213,191)(56,131,214,192)>;
G:=Group( (1,83)(2,84)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,97)(25,98)(26,85)(27,86)(28,87)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,149)(44,150)(45,151)(46,152)(47,153)(48,154)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,107)(58,108)(59,109)(60,110)(61,111)(62,112)(63,99)(64,100)(65,101)(66,102)(67,103)(68,104)(69,105)(70,106)(113,162)(114,163)(115,164)(116,165)(117,166)(118,167)(119,168)(120,155)(121,156)(122,157)(123,158)(124,159)(125,160)(126,161)(169,186)(170,187)(171,188)(172,189)(173,190)(174,191)(175,192)(176,193)(177,194)(178,195)(179,196)(180,183)(181,184)(182,185)(197,222)(198,223)(199,224)(200,211)(201,212)(202,213)(203,214)(204,215)(205,216)(206,217)(207,218)(208,219)(209,220)(210,221), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,193)(2,194)(3,195)(4,196)(5,183)(6,184)(7,185)(8,186)(9,187)(10,188)(11,189)(12,190)(13,191)(14,192)(15,95)(16,96)(17,97)(18,98)(19,85)(20,86)(21,87)(22,88)(23,89)(24,90)(25,91)(26,92)(27,93)(28,94)(29,125)(30,126)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,119)(38,120)(39,121)(40,122)(41,123)(42,124)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,148)(50,149)(51,150)(52,151)(53,152)(54,153)(55,154)(56,141)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,99)(71,178)(72,179)(73,180)(74,181)(75,182)(76,169)(77,170)(78,171)(79,172)(80,173)(81,174)(82,175)(83,176)(84,177)(127,168)(128,155)(129,156)(130,157)(131,158)(132,159)(133,160)(134,161)(135,162)(136,163)(137,164)(138,165)(139,166)(140,167)(197,215)(198,216)(199,217)(200,218)(201,219)(202,220)(203,221)(204,222)(205,223)(206,224)(207,211)(208,212)(209,213)(210,214), (1,169)(2,170)(3,171)(4,172)(5,173)(6,174)(7,175)(8,176)(9,177)(10,178)(11,179)(12,180)(13,181)(14,182)(15,56)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,167)(30,168)(31,155)(32,156)(33,157)(34,158)(35,159)(36,160)(37,161)(38,162)(39,163)(40,164)(41,165)(42,166)(57,211)(58,212)(59,213)(60,214)(61,215)(62,216)(63,217)(64,218)(65,219)(66,220)(67,221)(68,222)(69,223)(70,224)(71,188)(72,189)(73,190)(74,191)(75,192)(76,193)(77,194)(78,195)(79,196)(80,183)(81,184)(82,185)(83,186)(84,187)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)(91,151)(92,152)(93,153)(94,154)(95,141)(96,142)(97,143)(98,144)(99,206)(100,207)(101,208)(102,209)(103,210)(104,197)(105,198)(106,199)(107,200)(108,201)(109,202)(110,203)(111,204)(112,205)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,134)(120,135)(121,136)(122,137)(123,138)(124,139)(125,140)(126,127), (1,96,159,104)(2,97,160,105)(3,98,161,106)(4,85,162,107)(5,86,163,108)(6,87,164,109)(7,88,165,110)(8,89,166,111)(9,90,167,112)(10,91,168,99)(11,92,155,100)(12,93,156,101)(13,94,157,102)(14,95,158,103)(15,116,60,75)(16,117,61,76)(17,118,62,77)(18,119,63,78)(19,120,64,79)(20,121,65,80)(21,122,66,81)(22,123,67,82)(23,124,68,83)(24,125,69,84)(25,126,70,71)(26,113,57,72)(27,114,58,73)(28,115,59,74)(29,205,177,150)(30,206,178,151)(31,207,179,152)(32,208,180,153)(33,209,181,154)(34,210,182,141)(35,197,169,142)(36,198,170,143)(37,199,171,144)(38,200,172,145)(39,201,173,146)(40,202,174,147)(41,203,175,148)(42,204,176,149)(43,132,215,193)(44,133,216,194)(45,134,217,195)(46,135,218,196)(47,136,219,183)(48,137,220,184)(49,138,221,185)(50,139,222,186)(51,140,223,187)(52,127,224,188)(53,128,211,189)(54,129,212,190)(55,130,213,191)(56,131,214,192) );
G=PermutationGroup([(1,83),(2,84),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,79),(12,80),(13,81),(14,82),(15,88),(16,89),(17,90),(18,91),(19,92),(20,93),(21,94),(22,95),(23,96),(24,97),(25,98),(26,85),(27,86),(28,87),(29,133),(30,134),(31,135),(32,136),(33,137),(34,138),(35,139),(36,140),(37,127),(38,128),(39,129),(40,130),(41,131),(42,132),(43,149),(44,150),(45,151),(46,152),(47,153),(48,154),(49,141),(50,142),(51,143),(52,144),(53,145),(54,146),(55,147),(56,148),(57,107),(58,108),(59,109),(60,110),(61,111),(62,112),(63,99),(64,100),(65,101),(66,102),(67,103),(68,104),(69,105),(70,106),(113,162),(114,163),(115,164),(116,165),(117,166),(118,167),(119,168),(120,155),(121,156),(122,157),(123,158),(124,159),(125,160),(126,161),(169,186),(170,187),(171,188),(172,189),(173,190),(174,191),(175,192),(176,193),(177,194),(178,195),(179,196),(180,183),(181,184),(182,185),(197,222),(198,223),(199,224),(200,211),(201,212),(202,213),(203,214),(204,215),(205,216),(206,217),(207,218),(208,219),(209,220),(210,221)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,193),(2,194),(3,195),(4,196),(5,183),(6,184),(7,185),(8,186),(9,187),(10,188),(11,189),(12,190),(13,191),(14,192),(15,95),(16,96),(17,97),(18,98),(19,85),(20,86),(21,87),(22,88),(23,89),(24,90),(25,91),(26,92),(27,93),(28,94),(29,125),(30,126),(31,113),(32,114),(33,115),(34,116),(35,117),(36,118),(37,119),(38,120),(39,121),(40,122),(41,123),(42,124),(43,142),(44,143),(45,144),(46,145),(47,146),(48,147),(49,148),(50,149),(51,150),(52,151),(53,152),(54,153),(55,154),(56,141),(57,100),(58,101),(59,102),(60,103),(61,104),(62,105),(63,106),(64,107),(65,108),(66,109),(67,110),(68,111),(69,112),(70,99),(71,178),(72,179),(73,180),(74,181),(75,182),(76,169),(77,170),(78,171),(79,172),(80,173),(81,174),(82,175),(83,176),(84,177),(127,168),(128,155),(129,156),(130,157),(131,158),(132,159),(133,160),(134,161),(135,162),(136,163),(137,164),(138,165),(139,166),(140,167),(197,215),(198,216),(199,217),(200,218),(201,219),(202,220),(203,221),(204,222),(205,223),(206,224),(207,211),(208,212),(209,213),(210,214)], [(1,169),(2,170),(3,171),(4,172),(5,173),(6,174),(7,175),(8,176),(9,177),(10,178),(11,179),(12,180),(13,181),(14,182),(15,56),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,167),(30,168),(31,155),(32,156),(33,157),(34,158),(35,159),(36,160),(37,161),(38,162),(39,163),(40,164),(41,165),(42,166),(57,211),(58,212),(59,213),(60,214),(61,215),(62,216),(63,217),(64,218),(65,219),(66,220),(67,221),(68,222),(69,223),(70,224),(71,188),(72,189),(73,190),(74,191),(75,192),(76,193),(77,194),(78,195),(79,196),(80,183),(81,184),(82,185),(83,186),(84,187),(85,145),(86,146),(87,147),(88,148),(89,149),(90,150),(91,151),(92,152),(93,153),(94,154),(95,141),(96,142),(97,143),(98,144),(99,206),(100,207),(101,208),(102,209),(103,210),(104,197),(105,198),(106,199),(107,200),(108,201),(109,202),(110,203),(111,204),(112,205),(113,128),(114,129),(115,130),(116,131),(117,132),(118,133),(119,134),(120,135),(121,136),(122,137),(123,138),(124,139),(125,140),(126,127)], [(1,96,159,104),(2,97,160,105),(3,98,161,106),(4,85,162,107),(5,86,163,108),(6,87,164,109),(7,88,165,110),(8,89,166,111),(9,90,167,112),(10,91,168,99),(11,92,155,100),(12,93,156,101),(13,94,157,102),(14,95,158,103),(15,116,60,75),(16,117,61,76),(17,118,62,77),(18,119,63,78),(19,120,64,79),(20,121,65,80),(21,122,66,81),(22,123,67,82),(23,124,68,83),(24,125,69,84),(25,126,70,71),(26,113,57,72),(27,114,58,73),(28,115,59,74),(29,205,177,150),(30,206,178,151),(31,207,179,152),(32,208,180,153),(33,209,181,154),(34,210,182,141),(35,197,169,142),(36,198,170,143),(37,199,171,144),(38,200,172,145),(39,201,173,146),(40,202,174,147),(41,203,175,148),(42,204,176,149),(43,132,215,193),(44,133,216,194),(45,134,217,195),(46,135,218,196),(47,136,219,183),(48,137,220,184),(49,138,221,185),(50,139,222,186),(51,140,223,187),(52,127,224,188),(53,128,211,189),(54,129,212,190),(55,130,213,191),(56,131,214,192)])
Matrix representation ►G ⊆ GL5(𝔽29)
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 28 | 23 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 23 | 25 |
0 | 0 | 0 | 2 | 6 |
G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[28,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,23,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[28,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,23,2,0,0,0,25,6] >;
280 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2W | 4A | ··· | 4P | 7A | ··· | 7F | 14A | ··· | 14CL | 14CM | ··· | 14EH | 28A | ··· | 28CR |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
280 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | C7 | C14 | C14 | C14 | C28 | D4 | C7×D4 |
kernel | C22⋊C4×C2×C14 | C14×C22⋊C4 | C23×C28 | C24×C14 | C23×C14 | C22×C22⋊C4 | C2×C22⋊C4 | C23×C4 | C25 | C24 | C22×C14 | C23 |
# reps | 1 | 12 | 2 | 1 | 16 | 6 | 72 | 12 | 6 | 96 | 8 | 48 |
In GAP, Magma, Sage, TeX
C_2^2\rtimes C_4\times C_2\times C_{14}
% in TeX
G:=Group("C2^2:C4xC2xC14");
// GroupNames label
G:=SmallGroup(448,1295);
// by ID
G=gap.SmallGroup(448,1295);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1568,1597]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^14=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations